Canfranc Axion Detection Experiment (CADEx)

Bradley J. Kavanagh IFCA (UC-CSIC), Santander On behalf of the **CADEx** Collaboration

13 September 2023

problem of QCD*. Also natural cold Dark Matter candidates!

*Why is Charge-Parity (CP) symmetry preserved by QCD (or, why doesn't the neutron have an electric dipole moment?)

[See also Plenary Talk by Luca Visinelli on Thursday] [Pre-inflationary axion abundance: e.g. <u>1810.07192</u>, <u>2003.01100</u>]

[Post-inflationary axion abundance: e.g. <u>1412.0789</u>, <u>2108.05368</u>, <u>2007.04990</u>]

[See als Luca Visinelli on Inursday

e.g. <u>1810.07192</u>, <u>2003.01100</u>

[Buschmann, Foster & Safdi, <u>1906.00967]</u>

e.g. 1412.0789, 2108.05368,2007.04990

problem of QCD*. Also natural cold Dark Matter candidates!

*Why is Charge-Parity (CP) symmetry preserved by QCD (or, why doesn't the neutron have an electric dipole moment?)

[See also Plenary Talk by Luca Visinelli on Thursday] [Pre-inflationary axion abundance: e.g. <u>1810.07192</u>, <u>2003.01100</u>]

[Post-inflationary axion abundance: e.g. <u>1412.0789</u>, <u>2108.05368</u>, <u>2007.04990</u>]

Axions, a, are light pseudo-scalar particles proposed to solve the Strong CP problem of QCD*. Also natural cold Dark Matter candidates!

*Why is Charge-Parity (CP) symmetry preserved by QCD (or, why doesn't the neutron have an electric dipole moment?)

See also Plenary Talk by Luca Visinelli on Thursday] [Pre-inflationary axion abundance: e.g. <u>1810.07192</u>, <u>2003.01100</u>]

[Post-inflationary axion abundance: e.g. <u>1412.0789</u>, <u>1906.00967,2007.04990</u>]

Axions, a, are light pseudo-scalar particles proposed to solve the Strong CP problem of QCD*. Also natural cold Dark Matter candidates!

*Why is Charge-Parity (CP) symmetry preserved by QCD (or, why doesn't the neutron have an electric dipole moment?)

See also Plenary Talk by Luca Visinelli on Thursday] [Pre-inflationary axion abundance: e.g. <u>1810.07192</u>, <u>2003.01100</u>]

[Post-inflationary axion abundance: e.g. <u>1412.0789</u>, <u>1906.00967,2007.04990</u>]

The Canfranc Axion Detection **Experiment (CADEx): search for** axions at 90 GHz with Kinetic Inductance Detectors

Beatriz Aja,^a Sergio Arguedas Cuendis,^b Ivan Arregui,^c Eduardo Artal,^a R. Belén Barreiro,^d Francisco J. Casas,^d Marina C. de Ory,^e Alejandro Díaz-Morcillo,^f Luisa de la Fuente,^a Juan Daniel Gallego,^g Jose María García-Barceló,^f Benito Gimeno,^h Alicia Gomez,^e Daniel Granados,ⁱ Bradley J. Kavanagh,^d Miguel A.G. Laso,^c Txema Lopetegi,^c Antonio José Lozano-Guerrero,^f Maria T. Magaz,^e Jesús Martín-Pintado,^{e,*} Enrique Martínez-González,^d Jordi Miralda-Escudé,^{b,j} Juan Monzó-Cabrera,^f Francisco Najarro de la Parra,^e Jose R. Navarro-Madrid,^f Ana B. Nuñez Chico,^k Juan Pablo Pascual,^a Jorge Pelegrin,^k Carlos Peña Garay,^k David Rodriguez,^e Juan M. Socuéllamos,^d Fernando Teberio,¹ Jorge Teniente,^c Patricio Vielva,^d Iván Vila,^d **Rocío Vilar**^d and Enrique Villa^e

[JCAP 11 (2022) 044, <u>arXiv:2206.02980</u>]

 \bullet \bullet

Haloscope

- lacksquare

- \bullet

- \bullet

Science

- Instituto de Ciencias del Cosmos de la Universidad de Barcelona
- Donostia International Physics Center
- Laboratorio Subterráneo de Canfranc
- Instituto de Física de Cantabria (CSIC-UC)
- Universidad Politécnica de Cartagena Instituto de Física Corpuscular (Universidad de Valencia, CSIC)

Optics

Universidad Pública de Navarra Anteral S.L.

Detectors: Heterodyne & KIDs

Observatorio de Yebes (IGN) Centro de Astrobiología (CSIC-INTA) Universidad de Cantabria Instituto de Física de Cantabria (CSIC-UC) Instituto Madrileño de Estudios Avanzados en Nanociencia Instituto de Ciencias del Cosmos de la Universidad de Barcelona

Calibration & data reduction

- Instituto de Ciencias del Cosmos de la Universidad de Barcelona
- **Donostia International Physics Center**
- Laboratorio Subterráneo de Canfranc
- Instituto de Física de Cantabria (CSIC-UC)
- Centro de Astrobiología (CSIC-INTA)

Haloscope

Detectable axion mass set by resonant frequency of the haloscope cavity.

For the TM₁₁₀ mode, $f_r = \frac{c}{2}\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$ the resonant frequency is:

Dimensions $a \approx 1.7 \text{ mm}$ and b = 40 a gives a resonance frequency of $f_r = 90 \,\text{GHz}$

Develop tunable cavities to scan frequency range $f_r \in [86, 111] \text{ GHz}$

Need to maximize volume to increase the sensitivity \rightarrow **Parallelized haloscope of 16 cavities**

5

Detection: KIDs

Quasi-optical system of 16 horns + mirrors focuses signal on broadband Kinetic Inductance Detector (KID) sensors

KIDs sensitivity characterized by Noise Equivalent Power (NEP); values of $3.8 \times 10^{-19} \text{ W}/\sqrt{\text{Hz}}$ have been achieved.

Aim to reduce NEP by a factor of 4-10.

[1306.4238, <u>S. Hailey-Dunsheath et al. (2021)</u>]

Characterization of prototype KIDs sensors ongoing

Detection: KIDs

Photon absorbed by superconductor reduces kinetic inductance, altering the resonant frequency of the LC circuit

schools ongoing

Frequency (GHz)

Detection: KIDs

Quasi-optical system of 16 horns + mirrors focuses signal on broadband Kinetic Inductance Detector (KID) sensors

KIDs sensitivity characterized by Noise Equivalent Power (NEP); values of $3.8 \times 10^{-19} \text{ W}/\sqrt{\text{Hz}}$ have been achieved.

Aim to reduce NEP by a factor of 4-10.

[1306.4238, <u>S. Hailey-Dunsheath et al. (2021)</u>]

Characterization of prototype KIDs sensors ongoing

CADEx Conceptual Design

Immerse haloscope array in high static magnetic field of B = 8-10 T

- Magnetic field + haloscope: < 0.1 K
 - Optics : <0.1 K
 - Superconducting detector system: mK
 - Calibration system : injection signal

Aim to **discriminate polarized axion-photon conversion signal** from unpolarized background.

CADEx Conceptual Design

Immerse haloscope array in high static magnetic field of B = 8-10 T

- Magnetic field + haloscope: < 0.1 K
 - Optics : <0.1 K
 - Superconducting detector system: mK
 - Calibration system : injection signal

Aim to **discriminate polarized axion-photon conversion signal** from unpolarized background.

CADEx Axion Sensitivity

Estimate 5σ sensitivity assuming:

Magnetic field: B = 8 TTotal cavity volume: V = 0.2 LCavity quality factor: $Q_0 = 2 \times 10^4$

3 month exposure with NEP = 10^{-19} W/ \sqrt{Hz} 8 year scan with NEP = $3 \times 10^{-20} \text{ W}/\sqrt{\text{Hz}}$

Dark Photon Sensitivity

Other possibilities too: e.g. GHz Gravitational Waves

CADEx is sensitive to conversion of photons to **Dark Photon** γ' even

3 month exposure with NEP = 10^{-19} W/ \sqrt{Hz} 8 year scan with NEP = $3 \times 10^{-20} \text{ W}/\sqrt{\text{Hz}}$

CADEx Timeline

10 CADEx already accepted by Canfranc Underground Laboratory (LSC) under Eol-31-2021

Design and Demonstration phase (2 years)

Cryostat acquisition, installation and operation. Design and fabrication of cavities. Demonstration of key technology (haloscope, detectors, etc.) in the lab.

Pathfinder phase (2 years)

Development of first prototype of CADEx and installation in the LSC facility in the first year (haloscope + KIDs + calibration). During the second year, the pathfinder experiment will be carried out.

Operation phase (8 years)

Upgrade the experiment to improve the sensitivity & efficient non-resonant waveguide haloscope. Installation & Commissioning. Full Operation to cover mass range $m_a \in [330, 460] \,\mu eV$

Cavity design and fabrication

Outlook and Landscape

CADEX: a novel haloscope search for Dark Matter axions in the mass range 330–460 µeV (86–111 GHz)

Outlook and Landscape

CADEX: a novel haloscope search for Dark Matter axions in the mass range 330–460 µeV (86–111 GHz)

Additional Slides

Complementarity

Axion-photon conversic can lead to detectable radio signals

 \rightarrow An axion haloscope!

Neutron stars benefit from enhanced DM density (strong gravitational field) and large magnetic fields ($B \gtrsim 10^{10}$ T)

[Originally proposed by Ben Safdi and collaborators, e.g. <u>1804.03145</u>]

NS surrounded by a dense plasma which allows 'resonant' conversion, **when axion mass matches plasma mass**: $\omega_p(B_0, P) = m_a/2\pi$

100 GHz Radio Searches (same process...)

- A new search strategy with much to do:
 - Develop an end-to-end signal modeling pipeline (axion minicluster disruption, axion-photon conversion, radio detection)
 - Comprehensive exploration of most promising targets (Andromeda? Milky Way? Elsewhere?)
 - Explore a wide range of radio frequencies (and therefore a wide range of axion masses!)

[See e.g. <u>1910.11907</u>, <u>2104.08290</u>; <u>1912.08815</u>, <u>2202.08274</u>]

13

Complementarity

 \sim

Can also look for transient radio signatures from encounters of neutron stars and axion miniclusters

[e.g. 2011.05377, 2011.05378]

Sensitivity Estimates

Detected axion-photon conversion power:

Par

Axion I

Total ca

Magn

Unloaded

Coupl

Form

Axio

Noise equ

$$\begin{split} g_{a\gamma}[\text{GeV}^{-1}] &= \left(\frac{3.88 \times 10^2}{B[\text{T}]}\right) \sqrt{\frac{(1+\beta)^2}{\beta}} \sqrt{\frac{\text{SNR} \, m_a[\text{eV}] \, \text{NEP}[\text{W}/\sqrt{\text{Hz}}]}{V[\text{L}] \, Q_0 \, t[\text{s}]^{\frac{1}{2}} \, C}} \\ &= 3.88 \times 10^{-13} \text{GeV}^{-1} \\ &\times \left(\frac{10\text{T}}{B}\right) \left(\frac{0.25}{\frac{\beta}{(1+\beta)^2}}\right)^{\frac{1}{2}} \left(\frac{\text{SNR}}{5}\right)^{\frac{1}{2}} \left(\frac{m_a}{3.7 \times 10^{-4} \, \text{eV}}\right)^{\frac{1}{2}} \\ &\times \left(\frac{\text{NEP}}{1 \times 10^{-19} \, \text{W}/\sqrt{\text{Hz}}}\right)^{\frac{1}{2}} \left(\frac{0.2\text{L}}{V}\right)^{\frac{1}{2}} \left(\frac{2 \times 10^4}{Q_0}\right)^{\frac{1}{2}} \left(\frac{3 \text{ months}}{t}\right)^{\frac{1}{4}} \\ &\times \left(\frac{0.66}{C}\right)^{\frac{1}{2}} \,. \end{split}$$

 $P_d = \frac{\beta}{(1+\beta)^2} g_{a\gamma}^2 \frac{\rho_a}{m_a} B^2 C V Q_0$

rameter	Symbol	Value
DM Density	$ ho_a$	$0.45{ m GeVcm^{-3}}$
avity volume	V	$0.2\mathrm{L}$
netic field	B	$810\mathrm{T}$
quality factor	Q_0	$2 imes 10^4$
ling factor	eta	1
m factor	\mathbf{C}	0.66
on mass	m_a	$330460\mu eV$
ivalent power	NEP	$1 \times 10^{-19} (3 \times 10^{-20}) \mathrm{W}/\sqrt{\mathrm{Hz}}$

15

The Wider Picture

[cajohare.github.io/AxionLimits/]

The Wider Picture

[cajohare.github.io/AxionLimits/]

