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The problem

Consider data from a future direct detection experiment:

Signal

Background

In order to extract the properties 
of dark matter (DM), we need to 
know the expected event rate.  

This requires us to make some 
assumptions.

If we get those assumptions wrong, 
we get the DM properties wrong too.
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1. Direct detection of dark matter 

2. Astrophysical uncertainties 

3. How to deal with these uncertainties 

4. Combining direct detection with neutrino telescopes
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1. Direct detection of dark matter
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Direct detection of dark matter

• If DM is made up of Weakly Interacting Massive Particles 
(WIMPs), they should interact with ordinary matter 

• Aim to measure keV-scale nuclear recoils cause by DM 
interactions in dedicated detectors 

• Expected rate is very small. Require: 

• Large target mass 

• Low backgrounds 

• Low energy thresholds
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Event Rate

• Flux of DM particles with speed     is 

• Need to integrate over all DM speeds, above minimum 
required to excite a recoil of energy 

• Event rate per unit mass is then
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Astrophysics Particle and  
nuclear physics
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Cross section
Typically assume contact interactions.  

In the non-relativistic limit, obtain two main contributions. 
Write in terms of DM-proton cross section      :

Spin-independent (SI)

Spin-dependent (SD)

(�̄�5�µ�)(n̄�5�
µn)

(�̄�)(n̄n)

But more general interactions have been considered 
e.g. Del Nobile et al. [arXiv:1307.5955]

Nuclear physics

d�N
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• Enhancement factor:  
• Form factor: 
• Mean inverse speed:

The final event rate

Combining the various components for the event rate, we 
obtain:

i = SI, SD
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Typical spectra

2.1. DIRECT DETECTION FORMALISM 29

Figure 2.1: Spin-independent di↵erential event rates predicted for the
nuclear targets Xenon (solid blue), Germanium (dashed green) and
Argon (dot-dashed red) and for several WIMP masses m�, assuming
fp = fn. We assume a Standard Halo Model speed distribution, ⇢0 =
0.3 GeV cm�3 and a spin-independent cross section �p

SI = 10�45 cm2.
The Helm form factor [196] is assumed (see Sec. 2.3.1).

…assuming Standard Halo Model [see later…] 

Spin-independent (SI) event rates:
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Direct detection constraints

• Using direct detection experiments, we can place constraints 
on the parameter space                           

• Typically SI interaction dominates due to       enhancement

(m�,�
p
SI ,�

p
SD)
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Direct detection constraints
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2020?
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2. Astrophysical uncertainties
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Astrophysical uncertainties

The spectra, limits and contours of the previous slides are 
based a several assumptions:

1.  A fixed value of the local DM density  -  
which controls the overall normalisation of the rate 

2. A fixed shape for the DM speed distribution - 
which influences the shape of the recoil spectrum
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1. Local DM density

Can be measured using two methods: 

• Global - build a global mass model of the MW (including 
bulge, disk, halo…) and fit to available data 

• Local - use kinematics of local tracers to reconstruct 
potential and therefore mass in Solar neighbourhood 

Different measurements using both  
techniques give results in broad  
agreement  

A factor of 2-3 uncertainty in the  
overall normalisation of the rate

Read (2014) [arXiv:1404.1938]

Figure 2: A century of measurements of ⇢dm. In all cases, I assume the same matter density
and surface density of ⇢b = 0.0914M� pc�3 and ⌃b = 55M� pc�2 (Flynn et al., 2006). Values
derived from a surface density rather than a volume density have a blue filled circle; red data
points indicate the use of a ‘rotation curve’ prior (see §3.5.1). The green data point is derived
from Garbari et al. (2012) assuming a stronger prior on ⌃b = 55 ± 1M� pc�2 (see §5). All
error bars represent either 1� uncertainties or 68% confidence intervals. Overlaid are: ⇢dm,ext

extrapolated from the rotation curve assuming spherical symmetry (grey band); the launch
dates plus 5 years for the Hipparcos and Gaia astrometric satellite missions; and the start date
plus 5 years of the SDSS and RAVE surveys. Where no error bar was calculated for a given
measurement, there is simply a horizontal line through that data point. All data and references
(including definitions of abbreviations) are given in Table 4.

6

⇢� ⇠ 0.2� 0.6 GeV cm�3
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2. DM speed distribution

• Obtained from velocity distribution         :  

•           describes the fraction of dark matter particles with 
speed in range  

• Depends on the formation and merger history of the Milky 
Way 

• Form of           can be estimated by making simplifying 
assumptions, or it can be extracted from N-body simulations 

• However, ultimately, the form of           is a priori unknown

v ! v + dv

f1(v)

f1(v)

f(v)

f(v) =

I
f(v) d⌦v f1(v) = v2f(v)

f1(v)
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Standard Halo Model (SHM)

Speed distribution obtained for a spherical, isotropic and 
isothermal halo, with density profile                   : 

Leads to Maxwell-Boltzmann distribution: 

 Even within the SHM, there are still some parameter 
uncertainties: 

⇢(r) / r�2

ve ⇠ 220� 250 km s�1

E.g. Feast et al. (1997) [astro-ph/9706293],  
    Bovy et al. (2012) [arXiv:1209.0759] 

  �v ⇠ 155� 175 km s�1

f1(v) / v2
I

exp

✓
� (v � ve)

2

2�2
v

◆
d⌦v⇥(|v � ve|� vesc)

vesc = 533+54
�41 km s�1 Piffl et al. (RAVE, 2013) [arXiv:1309.4293]
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N-body simulations
High resolution N-body simulations can be used to extract the 

DM speed distribution

Phase-space structure in the local dark matter distribution 3

for all six halos with about 200 million particles within R200. Fur-
ther details of the halos and their characteristics can be found in
Springel et al. (2008).

In the following analysis we will often compare the six level-2
resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,
we scale the halos in mass and radius by the constant required to
give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-
nate system that is aligned with the principal axes of the inner halo,
and which labels particles by an ellipsoidal radius rell defined as
the semi-major axis length of the ellipsoidal equidensity surface on
which the particle sits. We determine the orientation and shape of
these ellipsoids as follows. For each halo we begin by diagonal-
ising the moment of inertia tensor of the dark matter within the
spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and
shape of the best fitting ellipsoid. We then reselect particles with
6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-
to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark
matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of
DM particles passing through laboratory detectors. It is important,
therefore, to determine not only the mean value of the DM density
8 kpc from the Galactic Centre, but also the fluctuations around this
mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our
simulations using an SPH smoothing kernel adapted to the 64
nearest neighbours. We then fit a power law to the resulting dis-
tribution of ln ρ against ln rell over the ellipsoidal radius range
6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles
in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that
the resulting distribution refers to random points within our ellip-
soidal shell rather than to random mass elements. We normalise the
resulting DPDFs to have unit integral. They then provide a prob-
ability distribution for the local dark matter density at a random
point in units of that predicted by the best fitting smooth ellipsoidal
model.

In Fig. 1 we show the DPDFs measured in this way for all
resimulations of Aq-A (top panel) and for all level-2 halos after
scaling to a common Vmax (bottom panel). Two distinct compo-
nents are evident in both plots. One is smoothly and log-normally
distributed around ρ = ρmodel, the other is a power-law tail to high
densities which contains less than 10−4 of all points. The power-
law tail is not present in the lower resolution halos (Aq-A-3, Aq-
A-4, Aq-A-5) because they are unable to resolve subhalos in these
inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-
sults, suggesting that resolution level 2 is sufficient to get a reason-
able estimate of the overall level of the tail. A comparison of the six
level 2 simulations then demonstrates that this tail has similar shape
in different halos, but a normalisation which can vary by a factor
of several. In none of our halos does the fraction of the distribu-
tion in this tail rise above 5× 10−5. Furthermore, the arguments of
Springel et al (2008) suggest that the total mass fraction in the in-
ner halo (and thus also the total volume fraction) in subhalos below
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Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel
to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured
directly from the simulation, while black dashed lines show a multivari-
ate Gaussian model fit to the individual component distributions. Residuals
from this model are shown in the upper part of each panel. The major axis
velocity distribution is clearly platykurtic, whereas the other two distribu-
tions are leptokurtic. All three are very smooth, showing no evidence for
spikes due to individual streams. In contrast, the distribution of the velocity
modulus, shown in the upper left panel, shows broad bumps and dips with
amplitudes of up to ten percent of the distribution maximum. Lower panel:
Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives
the median of all the fitted multivariate Gaussians. The dark and light blue
contours enclose 68% and 95% of all the measured distributions at each ve-
locity. The bumps seen in the distribution for a single box are clearly present
with similar amplitude in all boxes, and so also in the median curve. The
bin size is 5 km/s in all plots.

Vogelsberger et al. (2009)  
[arXiv:0812.0362]

Non-maxwellian  
structure
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FIG. 2. Top : Normalized speed distributions for debris from subhalos that are still present at z = 0 (solid

line), from subhalos present at z = 4.56 but not at z = 0 (dotted line), for all particles in the Milky Way

(black dashed line), and for non-debris particles (gray dashed line). The comparison is made for particles in

the radial shell 7.5 < r < 9.5 kpc. Bottom: Histogram of speed distribution for the debris flow (solid black),

as well as the distributions of particles from a sample of subhalos that contribute the most to the debris flow

(colored dashed: 19765:purple, 19624:green, 17928:blue, 17689:red, 18506:yellow). The left panel shows the

distributions in the Galactic frame, while the right panel is in the Earth frame (assuming t

max

= June 2).

distribution (black dashed) exhibits the well-known [5, 12, 50–53] departures from the shape of a

Maxwellian distribution, consisting of a deficit near the peak and an excess at high speeds. The

speed distribution for non-debris particles (grey dashed) is similar to the distribution for debris

from fully disrupted subhalos (dotted), indicating that the T

4.56 debris has equilibrated with the

host halo. In contrast, the debris from surviving subhalos has an intriguing high-speed behavior,

with a distribution (solid) peaked at ⇠ 350 km/s. This is consistent with the results of [14], which

Debris flows

Kuhlen et al. (2012)  
[arXiv:1202.0007]

Pillepich et al. 5

Fig. 2.— DM velocity distributions in the Galactic rest frame for particles in an annulus near the Sun’s location (R� = 8 kpc): radial
(top left), azimuthal (top right), vertical (bottom left) components, and the velocity modulus (bottom right). For Eris (black) we show
distributions for particles in the disk (|R � R�| < 2 kpc, |z| < 2 kpc), while for ErisDark (grey) all particles within a spherical shell of
width 4 kpc are used. In the upper right we additionally show the distribution of Eris star particles (cyan, scaled by a factor of 0.4). In
the lower right, we also show Maxwellian curves (dotted) with the same peak speed as the simulations’ distribution (v

peak

= 195 km s�1

in Eris and 155 km s�1 in ErisDark), as well as the Standard Halo Model with v
peak

= 220 km s�1 (dashed). The simulation curves have
been smoothed with a boxcar window of width 50 km s�1.

by a factor of 0.4 in order to show its shape on the same
plot.
We compare the Eris disk ROI velocity distributions to

the ErisDark spherical shell sample of width 4 kpc, which
contains 229,931 DM particles. This kind of spherical
shell sample is commonly used in the analysis of DM-
only simulations of Milky-Way-like halos, for which there
is no preferred plane to associate with the Galactic disk.
We additionally plot a Maxwell-Boltzmann (MB) distri-
bution with the same peak speeds as the simulations’
distributions: �1D = vpeak/

p
2 = 137.9 (109.6) km s�1 in

Eris (ErisDark).
Compared to ErisDark, the dissipational baryonic

physics in Eris has broadened the radial and azimuthal
distributions, while the vertical component has become
slightly narrower. Note that the azimuthal component
in Eris is skewed towards positive v

✓

, indicating the
presence of an enhanced population of particles approx-
imately co-rotating with the stars, i.e. a so-called “dark

disk”. This asymmetry is the topic of Section 3.
In the speed distribution (lower right), the DM-

only simulation exhibits the familiar departures from a
Maxwellian shape (Hansen et al. 2006; Vogelsberger et al.
2009; Kuhlen et al. 2010), with a deficit near the peak
and excess particles at high speeds. In Eris the distri-
bution is shifted to larger speeds, with the mean speed
increasing from hvi = 187.6 km s�1 to 220.8 km s�1. Fur-
thermore, it no longer shows as marked a departure from
the matched Maxwellian as in the DM-only case, only ex-
ceeding it slightly from 230 to 380 km s�1and falling more
rapidly at even higher speeds. We also compared to the
so-called Standard Halo Model (SHM) distribution, con-
sisting of a Maxwellian with vpeak = 220 km s�1 (dashed
line). Eris actually exceeds the SHM at all speeds less
than ⇠ 350 km s�1, and then again falls more sharply at
higher speeds.
Recently Mao et al. (2013b) proposed an empirical fit-

Dark disk

Pillepich et al. (2014)  
[arXiv:1308.1703]

However,  N-body simulations cannot probe down to the 
sub-milliparsec scales probes by direct detection…

f 1
(v
)
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However, this does not exclude 
the possibility of a stream - e.g. 
due to the ongoing tidal disruption 
of the Sagittarius dwarf galaxy. 

Analysis of N-body simulations indicate that it is unlikely for a 
single stream to dominate the local density -  lots of different 
‘streams’ contribute to make a smooth halo. 

Local substructure

May want to worry about ultra-local substructure - subhalos and 
streams which are not completely phase-mixed. 

Helmi et al. (2002) [astro-ph/0201289]

Vogelsberger et al. (2007) [arXiv:0711.1105]

Freese et al. (2004) [astro-ph/0309279]
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Examples

f(v) =

I
f(v) d⌦v f1(v) = v2f(v) ⌘(v) =

Z 1

v

f1(v0)

v0
dv0



Bradley Kavanagh - IPhT Seminar 14/01/2015

What could possibly go wrong?

Generate mock data for 3 future experiments - Xe, Ar, Ge - for a 
given                 assuming a stream distribution function. Then 
construct confidence contours for these parameters, assuming:

(m�,�
p
SI)

(correct) stream distribution (incorrect) SHM distribution

Benchmark

Best fit
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3. How to deal with these uncertainties
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Fixing it: previous approaches

• Incorporate uncertainties in SHM parameters 

• Attempt to measure              directly from the data (assuming 
a particular value for       ) 

• Write             as a large number of steps and optimise the 
step heights 

• Write down a general parametrisation for         and fit the 
parameters to the data

⌘(vmin)
m�

⌘(vmin)

f(v)

Strigari & Trotta [arXiv:0906.5361]

Fox, Liu & Weiner [arXiv:1011.915]
Frandsen et al. [arXiv:1111.0292]

Feldstein & Kahlhoefer [arXiv:1403.4606]

Peter [arXiv:1103.5145]

Our approach - but need to be careful 
which parametrisation to use
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Previous work of Peter 
considered a binned 

parametrisation for        . 
However, the fixed width of 
the bins leads to a bias in 
the reconstructed WIMP 

mass.

Possible parametrisations

f(v)

Could also consider a 
polynomial parametrisation: 

However - this does not give 
us a physical distribution. 

f(v) =
N�1X

k=0

akv
k = a0 + a1v + a2v

2 + ...
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Our parametrisation

Need a parametrisation that is general and which is 
everywhere positive:

f(v) = exp

 
N�1X

k=0

akPk(v)

!

for some polynomial basis          .Pk(v)

f1(v) = v2f(v)

Now we attempt to fit the particle 
physics parameters              , as 

well as the astrophysics 
parameters          .

(m�,�
p)

{ak}
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Our previous example

Assuming incorrect 
distribution

Using our 
parametrisation

DM mass is accurately and 
precisely reconstructed - 
without any assumptions.

But, there is now a strong 
degeneracy in the 

reconstructed cross section 
[which we’ll get back to 

shortly…]
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Reconstructing the WIMP mass

Best fit
1�2�

Ideal experiments ‘Real’ experiments

mrec
= m�

This method allows an unbiased reconstruction of the WIMP 
mass over a wide range of parameter space - including when 
realistic detector properties (background, energy resolution) 

are taken into account. 
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Different speed distributions

True mass

• Generate 250 mock data 
sets 

• Reconstruct mass and 
obtain confidence intervals 
for each data set 

• True mass reconstructed 
well (independent of speed 
distribution) 

• Can also check that 68% 
intervals are really 68% 
intervals
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Cross section degeneracy

This is a problem for any 
astrophysics-independent method!

dR

dER
/ �

Z 1

vmin

f1(v)

v
dv

Minimum WIMP speed probed 
by a typical Xe experiment
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4. Combining direct detection with 
neutrino telescopes
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Solar Capture

• Need to find a way of probing the low-speed 
WIMP population 

• WIMPs scatter with nuclei in the Sun (A), 
losing energy and entering a bound orbit (B) 

• WIMPs thermalise and eventually annihilate 

• We can measure the neutrinos produced 
using neutrino telescope experiments (e.g. 
IceCube) and therefore probe the capture rate 

• Crucially, it is the low energy - low speed - 
WIMPs which are preferentially captured!

A

B
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Incorporating IceCube

dCi

dV
=

Z v
max

0
dv

f1(v)

v
w⌦�

v
esc

,i(w)
Solar capture rate  
per unit volume: 5

FIG. 1. The ranges of WIMP velocity that Solar capture
and direct detection experiments are sensitive to, as a func-
tion of the WIMP mass. The blue band shows the range of
speeds to which a Xenon-based detector with an energy win-
dow of [5, 45] keV is sensitive. The green band shows the
corresponding range of speeds for an Argon-based detector
with an energy window of [30, 100] keV. The solid (dashed)
red lines shows the maximum speed to which Solar WIMP
capture is sensitive for SI (SD) interactions. See the text for
further details.

WIMPs which are captured can annihilate in the Sun
to Standard Model particles. Over long timescales, equi-
librium is reached between the capture and annihilation
rates. In such a regime, the annihilation rate �A is equal
to half the capture rate, independent of the unknown an-
nihilation cross section [39]. We assume here that anni-
hilation is e�cient enough for equilibrium to be reached
(c.f. Ref. [62]).

The majority of Standard Model particles produced by
WIMP annihilations cannot escape the Sun. However,
some of these particles may decay to neutrinos or neutri-
nos may be produced directly in the annihilation. Neu-
trinos can reach the Earth and be detected by neutrino
telescope experiments. In this work, we focus on the Ice-
Cube experiment [63], which measures the Čerenkov radi-
ation produced by high energy particles traveling through
ice. IceCube aims at isolating the contribution of muons
produced by muon neutrinos interacting in the Earth or
its atmosphere. The amount of Čerenkov light detected,
combined with the shape of the Čereknow cascade, al-
lows the energy and direction of the initial neutrino to
be reconstructed.

The spectrum of neutrinos arriving at IceCube is given
by

dN⌫

dE⌫
=

�A

4⇡D2

X

f

Bf
dNf

⌫

dE⌫
, (27)

where D is the distance from the Sun to the detector and
the sum is over all annihilation final states f , weighted

by the branching ratios Bf . The factor dNf
⌫ /dE⌫ is the

neutrino spectrum produced by final state f , taking into
account the propagation of neutrinos as they travel from
the Sun to the detector [64, 65]. The branching ratios
depend on the specific WIMP under consideration. For
simplicity, it is typically assumed (as we do here) that
the WIMPs annihilate into a single channel. For the
computation of Eq. (27) we use a modified version of
the publicly available DarkSUSY code [66, 67], that also
accounts for the telescope e�ciency (see also Sec. III).

III. BENCHMARKS AND PARAMETER
RECONSTRUCTION

In order to determine how well the WIMP parameters
can be recovered, we generate mock data sets for IceCube
and three hypothetical direct detection experiments.
Table I displays the parameters we use for the three di-

rect detection experiments. They are chosen to broadly
mimic next-generation detectors that are currently in de-
velopment. Each experiment is described by the energy
window it is sensitive to and the total exposure, which
is the product of the fiducial detector mass, the expo-
sure time and the experimental and operating e�ciencies
(which we implicitly assume to be constant). We also in-
clude a gaussian energy resolution of �E = 1 keV and a
flat background rate of 10�7 events/kg/day/keV.
We choose three experiments using di↵erent target nu-

clei as it has been shown that the employment of mul-
tiple targets significantly enhances the accuracy of the
reconstruction of the WIMP mass and cross sections [68–
70]. Furthermore, if the WIMP velocity distribution is
not known, multiple targets are a necessity [30, 31]. We
note that our modelling of the detectors is rather unso-
phisticated. More realistic modelling would include, for
instance, energy-dependent e�ciency. However, the de-
tector modelling we employ here is su�cient to estimate
the precision with which the WIMP parameters can be
recovered.
We divide the energy range of each experiment into

bins and generate Asimov data [71] by setting the ob-
served number of events in each bin equal to the expected
number of events. While this cannot correspond to a
physical realisation of data as the observed number of
events will be non-integer, it allows us to disentangle the
e↵ects of Poissonian fluctuations from the properties of
the parametrisations under study. Including the e↵ect of
Poissonian fluctuations would require the generation of
a large number of realisations for each benchmark. The
precision in the reconstruction of the WIMP parameters
will, in general, be di↵erent for each realisation. This
leads to the concept of coverage, i.e. how many times
the benchmark value is contained in the credible inter-
val estimating the uncertainty in the reconstruction (c.f.
Ref. [72]). We leave this for future work, noting here that
Ref. [33] showed that the polynomial parameterisation
we use (Sec. III B) provides almost exact coverage for the

Good overlap between 
speeds probed by 

different experiments

Generate mock data from 
IceCube and include it in 

the reconstruction

But Sun is mainly spin-1/2 
Hydrogen - need to 

include SD interactions
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Direct detection only
Consider a single benchmark:

annihilation to         , SHM+DD distribution⌫µ⌫̄µ
m� = 30GeV; �p

SI = 10�45 cm2; �p
SD = 2⇥ 10�40 cm2

Benchmark
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Direct detection only

Benchmark

Best fit

Fixed (correct) speed distribution
Our parametrisation

Consider a single benchmark:

annihilation to         , SHM+DD distribution⌫µ⌫̄µ
m� = 30GeV; �p

SI = 10�45 cm2; �p
SD = 2⇥ 10�40 cm2
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Direct detection and IceCube

Benchmark

Best fit

Direct detection only (our param.)

Direct detection + IceCube (our param.)

Consider a single benchmark:

annihilation to         , SHM+DD distribution⌫µ⌫̄µ
m� = 30GeV; �p

SI = 10�45 cm2; �p
SD = 2⇥ 10�40 cm2
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Reconstructing        - DD only f(v)

SHM
SHM+DD

Best fit

Use constraints on         to 
construct confidence 
intervals on f(v)

{ak}

Note: strong correlations 
between intervals at 
different values of v

With direct detection only, 
constraints are very weak

True SHM+DD distribution
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Reconstructing        - DD + IceCube f(v)

SHM
SHM+DD

Best fit

Addition of IceCube 
significantly improves 
constraints on         
(factor of ~4 at 300 km/s)

f(v)

Best fit now traces true 
distribution closely over 
all speeds

Performing full likelihood 
analysis, we can exclude 
SHM at      level.

True SHM+DD distribution

3�
[Using 3-5 years exposure, for benchmarks 
just below current sensitivity]
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What next?

This method shows that astrophysical uncertainties in 
canonical direct detection scenarios can be entirely controlled!

So what next? 

• Directional detection - can we extend this 
parametrisation to cover the full 3-D dimensional velocity 
distribution? 

• Non-standard interactions - does this technique also 
work successfully for more complex (velocity dependent?) 
interactions? 

• Other probes - can we constrain this parametrisation with 
other probes sensitive to the speed distribution (e.g. mass 
modelling of the Milky Way)?
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Conclusions

• In the post-discovery era, we want to extract WIMP physics 
from direct detection experiments 

• Astrophysical uncertainties were previously a serious problem 
in the analysis of future data 

• We have presented a new, general parametrisation for the 
speed distribution, which allows us to reconstruct the WIMP 
mass - and the speed distribution itself 

• As with all astrophysics-independent methods, we cannot pin 
down the cross section without information about low-speed 
WIMPs

• Neutrino telescopes should provide us with that information - 
allowing us to extract the WIMP mass and cross section in 
the years after the discovery of Dark Matter
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NewDark

Thank you
Questions?
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Backup Slides
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How many terms?
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`Shapes’ of the speed distribution
10

FIG. 3. Example shapes for the directionally-averaged veloc-
ity distribution f(v). These are labeled i-iv and are referred
to in the text of Sec. IV, V and VI to explain the di↵erent
regions of parameter space which can be fit to the data. For
comparison, the Standard Halo Model (SHM) and the SHM
with a dark disk (SHM+DD) are shown as dashed blue and
dot-dashed green lines respectively.

A) this is counteracted by the steep velocity integral at
low speeds, due to the presence of the dark disk.

Again, when we allow the speed distribution to vary,
the contours are significantly wider. In the case of the
binned speed distribution, the likelihood peaks at around
m� ⇡ 50 GeV, compared to the input value of 100 GeV.
A possible bias in the WIMP mass when using the binned
distribution has been noted previously [4, 31], although
in this case the e↵ect is relatively minor and the input
value lies within the 68% contours. When the polyno-
mial parametrisation is used, the best-fit point is closer
to the input parameter values. However, there is a
strong degeneracy between the mass and the cross sec-
tions, and consequently for both parameterisations the
displacement of the best-fit point away from the input
parameter values is much smaller than the uncertainties
on the parameters.

A significant di↵erence between the two parameterisa-
tions is that the contours for the polynomial parametri-
sation extend up to large values of �SI

p

and �

SD

p

(this is
most apparent in the lower-right panel of Fig. 4). This
is a manifestation of the degeneracy described in Sec. I.
Direct detection experiments do not probe the low-speed
WIMP population. Thus, a velocity integral which is
compatible with the input one in the region probed by the
experiments but sharply increasing towards low speeds
can still produce a good fit, provided that the cross sec-
tion is also increased to give the correct total number
of events. An example of such a distribution is shown
in Fig. 3, labeled ‘iii’. These rapidly varying distribu-
tions are more easily accommodated in the polynomial
parametrisation than in the binned one, which explains
why the contours do not extend to large cross sections in
that case (top row).

This region at large cross sections for the polynomial
parameterisation did not appear in the case of benchmark
A. This is because the parameter space describing the
shape of the speed distribution is very large and distri-
bution functions which rise rapidly at low v do not make
up a large fraction of the parameter space and, there-
fore, may not be well explored. In the case of benchmark
B (which has a dark disk component), the input f(v)
is already increasing towards low speeds. This means
that such rapidly rising distributions are better explored
and this degeneracy becomes clear. The degeneracy up
to high cross sections would become manifest for bench-
mark A if significantly more live points were used in the
parameter scan. Therefore, the boundaries of the con-
tours in Fig. 2 for benchmark A at large �

SI

p

and �

SD

p

should be considered as lower limits.

C. Benchmark C

Figure 5 shows the results for benchmark C, for which
the mass is reduced to 30 GeV, with cross sections of
�

SI

p

= 10�45 cm2 and �

SD

p

= 2 ⇥ 10�40 cm2 and a SHM
f(v). As for benchmarks A and B, using a fixed speed
distribution (black dashed) leads to closed contours and
tight constraints on the WIMP parameters and, with the
binned parametrisation (top row), there again appears to
be a slight bias towards lower WIMP masses, although
the contours are not significantly widened. Indeed, for
a binned f(v), the reconstruction works quite well and
all three quantities are determined with a good precision
(approximately one order of magnitude for the cross sec-
tions and a factor of 2 for the WIMP mass). However,
the results of the scan using the polynomial parametri-
sation (bottom row) are dramatically di↵erent. The 95%
confidence contours now extend up to m� ⇡ 100 GeV,
owing to the wide range of functional forms which can
be explored by this parametrisation. The degeneracy in
the cross sections up to large values is even more pro-
nounced than in the case of benchmark B. The lower in-
put WIMP mass of benchmark C means that the region
not covered by direct detection experiments extends up
to v ⇠ 200 km s�1, giving more freedom to the velocity
integral to increase at low v.

For the polynomial parametrisation, the contours ex-
tend down to arbitrarily small values of �SD

p

. As in the
case of the higher mass benchmarks, explaining the data
with only SI interactions requires a steeper velocity in-
tegral. For the low mass benchmarks, the fiducial spec-
trum is already relatively steep, requiring a velocity in-
tegral which is even steeper to give a good fit to the
data at higher values of m�. This is possible using the
rapidly-varying polynomial parametrisation but not us-
ing the binned parametrisation, allowing the low �

SD

p

re-
gion to enter the confidence contours only in the former
case.
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Directional detection
6.4. DISCRETISING THE VELOCITY DISTRIBUTION 147

Figure 6.3: The SHM velocity distribution (top) as well as N = 2 (mid-
dle) and N = 3 (bottom) discretised approximations. In each case, we
have integrated over the �0 direction and only show f(v, cos ✓0). The
vector vlag is aligned along ✓0 = 0. The same colour scale is used in each
plot.
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Figure 6.3: The SHM velocity distribution (top) as well as N = 2 (mid-
dle) and N = 3 (bottom) discretised approximations. In each case, we
have integrated over the �0 direction and only show f(v, cos ✓0). The
vector vlag is aligned along ✓0 = 0. The same colour scale is used in each
plot.

Discretise into forward and 
backwards distributions
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Results

6.4. DISCRETISING THE VELOCITY DISTRIBUTION 151
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Figure 6.4: Exact and approximate forward and backward Radon trans-
forms, f̂1 and f̂2, for the SHM. The approximate Radon transforms are
obtained by discretising the full velocity distribution into N = 2 angular
bins. The vector vlag is aligned along ✓0 = 0.

simple N = 2 discretisation of the velocity distribution is not su�cient to

capture the angular features of the stream
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Figure 6.5: As Fig. 6.4, but for a stream distribution with vlag =
400 km s�1 and �v = 20 km s�1.

6.4.3 N = 3 discretisation

Given the discrepancies in the N = 2 case, we will now consider the N = 3

discretisation, which should improve the fit between the true and approxi-
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forms, f̂1 and f̂2, for the SHM. The approximate Radon transforms are
obtained by discretising the full velocity distribution into N = 2 angular
bins. The vector vlag is aligned along ✓0 = 0.

simple N = 2 discretisation of the velocity distribution is not su�cient to

capture the angular features of the stream
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Figure 6.5: As Fig. 6.4, but for a stream distribution with vlag =
400 km s�1 and �v = 20 km s�1.

6.4.3 N = 3 discretisation

Given the discrepancies in the N = 2 case, we will now consider the N = 3

discretisation, which should improve the fit between the true and approxi-

Forward recoils Backward recoils

Distribution of recoils using the exact velocity distribution and the 
approximate (discretized) distribution (for SHM)


