Astrophysical uncertainties in direct detection experiments

Bradley J Kavanagh IPhT-Saclay

Based on work with A M Green and M Fornasa: arXiv:1303.6868, arXiv:1312.1852, arXiv:1410.8051

Outline

- Direct detection of dark matter
- The problem of astrophysical uncertainties
- What goes wrong?
- A method of controlling astrophysical uncertainties
- Combining direct detection and neutrino telescopes

Direct detection

Aim to measure recoil spectrum as a function of recoil energy, E_R

Astrophysical uncertainties

Need to know:

- DM density, ho_0 , controls overall normalisation of rate

 $ho_0 \sim 0.2 - 0.6 \, {\rm GeV \, cm^{-3}}$ Read (2014) [arXiv:1404.1938]

- Speed distribution, $f_1(v)$, controls shape of recoil spectrum and is degenerate with DM mass m_χ

A given nuclear recoil could be caused by a slow-moving, heavy DM particle, or a fast-moving, light particle.

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} \propto \sigma \,\eta(v_{\min}) \qquad \qquad \eta(v_{\min}) = \int_{v_{\min}}^{\infty} \frac{f_1(v)}{v} \,\mathrm{d}v$$

Uncertainties in $f_1(v)$

Typically assume Standard Halo Model (SHM) - a smooth, equilibrated halo with $\rho(r) \propto r^{-2}$. However, there could be a contribution from a dark disk (DD), streams, tidal flows...

What could possibly go wrong?

Generate mock data for 3 future experiments (Xe, Ge, Ar) assuming a stream distribution function. Reconstruct $(m_{\chi}, \sigma_p^{SI})$ assuming:

Trying to fix the problem

We want to be able to write down a *general* form for the speed distribution. Try:

$$f_1(v) = \sum_{k=0}^{N-1} a_k v^k = a_0 + a_1 v + a_2 v^2 + \dots$$

But negative values cannot correspond to physical distribution functions...

Many other approaches have also been proposed: Strigari & Trotta, Fox et al., Frandsen et al., Peter, Feldstein & Kahlhoefer...

Parametrising $f_1(v)$

We want to be able to write down a *general* form for the speed distribution which is *everywhere positive*.

$$f_1(v) = v^2 \exp\left(\sum_{k=0}^{N-1} a_k v^k\right)$$

Note: factor of v^2 comes from volume element of the distribution function d^3v

Now we can fit not only $(m_{\chi}, \sigma_p^{SI})$ but also the speed distribution parameters $\{a_k\}$

Result

Tested over a range of WIMP masses and distribution functions [arXiv:1312.1852]

Cross section degeneracy

Including IceCube data

IceCube is sensitive to neutrinos from WIMP annihilations in the Sun

Solar capture occurs preferentially for *low speed* WIMPs - they have less energy to begin with

Combining IceCube and direct detection mock data should give us complementary information about WIMPs of *all* speeds

Sun is mostly spin-1/2 Hydrogen - so also need to include spin-*dependent* interactions

Complementarity

Consider a single benchmark:

$$\begin{split} m_{\chi} &= 30\,{\rm GeV}; \ \sigma_{SI}^p = 10^{-45}\,{\rm cm}^2; \ \sigma_{SD}^p = 2\times 10^{-40}\,{\rm cm}^2 \\ & \text{annihilation to} \ \nu_{\mu}\bar{\nu}_{\mu} \ \text{, SHM+DD distribution} \end{split}$$

Conclusions

- Poor astrophysical assumptions can lead to biased results for the WIMP mass and cross sections
- Demonstrated a general parametrisation which allows us to *fit* the speed distribution, along with other parameters
- Allows an unbiased measurement of the WIMP mass from future direct detection data
- Lack of sensitivity to low speed WIMPs means cross section would remain unknown - a problem faced by any method which makes no assumptions
- Introducing future IceCube data can break this degeneracy and allows us to pin down the WIMP mass and cross section and even reconstruct $f_1(v)$ itself!

Thank you

Questions?

Backup Slides

Mass reconstruction

Perfect energy resolution Finite

Non-zero backgrounds Finite energy resolution

Reconstructing the speed distribution

Reconstructing the speed distribution

How many terms?

`Shapes' of the speed distribution

