Indirect probes of Dark Matter

Bradley J. Kavanagh (IFCA, UC-CSIC, Santander)

First EuCAPT Annual Symposium 6th May 2021

kavanagh@ifca.unican.es

@BradleyKavanagh

Direct Detection

Indirect DetectionTM

Indirect Detection

What are indirect probes?

Broad definition - searches for DM in which the interactions (gravitational or otherwise) happen whether we like it or not ('passive probes?')

Practical definition - searches for the effects of DM in astrophysical and cosmological systems.

Cynical definition - searches for DM in which we have very little experimental control (e.g. over backgrounds, systematics, etc.)

З

What are indirect probes?

Broad definition - searches for DM in which the interactions (gravitational or otherwise) happen whether we like it or not ('passive probes?')

Practical definition - searches for the effects of DM in astrophysical and cosmological systems.

Cynical definition - searches for DM in which we have very little experimental control (e.g. over backgrounds, systematics, etc.)

4

Gamma-rays in the Milky Way

Note: increasing evidence of consistency with point sources. Millisecond pulsars? [E.g. Macias et al., <u>1611.06644</u>, <u>1901.03822</u>; Bartels et al., <u>1711.04778</u>; But see also Leane & Slatyer, <u>2002.12370</u>]

Gamma-ray constraints

Gamma-ray constraints

How can we extend the reach of these indirect searches?

But hard to reach much further down in cross section... Especially with plenty of modelling uncertainties (e.g. J-factors)... [e.g. Alvarez et al., <u>2002.01229</u>; Ando et al., <u>2002.11956</u>]

Strengthening the constraints

Discover more dSphs...?

[Ando, **BJK**, Macias et al., <u>1905.07128</u>]

7

The MeV 'Gap' New telescopes and theoretical developments

Careful modelling required for MeV-scale DM...

[See also Boddy & Kumar, <u>1509.03333;</u> Coogan et al., <u>1907.11846</u>, <u>2101.10370</u>]

The MeV 'Gap' New telescopes and theoretical developments

Careful modelling required for MeV-scale DM...

[See also Boddy & Kumar, <u>1509.03333;</u> Coogan et al., <u>1907.11846</u>, <u>2101.10370</u>]

Inverse Compton scattering (ICS)

+ final state radiation ("FSR") + radiative decay ("Rad"), for muons

The MeV 'Gap' Old telescopes and new approaches

[Cirelli, Fornengo, **BJK** & Pinetti, <u>2007.11493</u>] [See also Essig et al., <u>1309.4091</u>; Boudaud et al., <u>1612.07698</u>]

Constraints from the INTEGRAL X-ray telescope:

The MeV 'Gap' Old telescopes and new approaches

[Cirelli, Fornengo, BJK & Pinetti, 2007.11493]

What are indirect probes?

Broad definition - searches for DM in which the interactions (gravitational or otherwise) happen whether we like it or not ('passive probes?')

Practical definition - searches for the effects of DM in astrophysical and cosmological systems.

Cynical definition - searches for DM in which we have very little experimental control (e.g. over backgrounds, systematics, etc.)

11

DM Capture in the Earth and Sun

Complementary to direct searches for Strongly interacting DM [e.g. **BJK**, <u>1712.04901</u>; EDELWEISS, <u>1901.03588</u>]

DM Capture in the Earth and Sun

Complementary to direct searches for Strongly interacting DM [e.g. **BJK**, <u>1712.04901</u>; EDELWEISS, <u>1901.03588</u>]

DM Capture in exoplanets

[See also Leane et al., <u>2101.12213</u>; Leane & Linden, <u>2104.02068</u>]

talk this morning]

Neutron Star Heating

[Baryakhtar et al., <u>1704.01577</u>]

NS and WD capture rate becoming more and more refined, but what are the observational prospects? [Acevedo et al., <u>1911.06334;</u> Bell et al., <u>2004.14888</u>, <u>2104.14367</u>; Dasgupta et al., <u>2006.10773</u>] Captured DM may also affect NS equation of state: [Cermeño et al., <u>1710.06866</u>]

[Bell et al., <u>1904.09803</u>]

Axions and Neutron Stars

$$\mathcal{L} \supset -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$= -\frac{1}{4} g_{a\gamma\gamma} a \boldsymbol{E} \cdot \boldsymbol{B}$$

[O'Hare, <u>cajohare.github.io/AxionLimits/]</u>

Dense plasma around NS allows 'resonant' conversion when axion mass matches plasma mass:

 $\omega_p \left(B_0, P \right) = m_a / 2\pi$

Radio up to X-ray signals, depending on axion mass...

[Huang et al., <u>1803.08230;</u> Hook et al., <u>1804.03145;</u> Safdi et al., <u>1811.01020;</u> Foster et al., <u>2004.00011</u>]

Axions and Neutron Stars

Recent refinements in modeling axions and photons in the NS magnetosphere:

Red - Northern hemisphere

Blue - Southern hemisphere

[Witte et al., <u>2104.07670]</u>

[See also Battye et al., <u>1910.11907</u>, <u>2104.08290</u>; Leroy et al., <u>1912.08815</u>]

Axions and Neutron Stars

Recent refinements in modeling axions and photons in the NS magnetosphere:

Red - Northern hemisphere

Blue - Southern hemisphere

[Witte et al., <u>2104.07670]</u>

[See also Battye et al., <u>1910.11907</u>, <u>2104.08290</u>; Leroy et al., <u>1912.08815</u>]

Axions and Neutron Stars

Clumps of axion DM ('miniclusters') crossing NSs could lead to bright radio transients towards the GC: [Hogan & Rees (1988)]

[BJK, Edwards, Visinelli & Weniger, 2011.05377; Edwards, BJK, Visinelli & Visinelli, 2011.05378]

Axion-miniclusters + NSs

[Bertone, Croon, Amin, Boddy, BJK, Mack, Natarajan, Opferkuch, Schutz, Takhistov, Weniger, Yu, SciPost Phys. Core 3, 007 (2020), <u>1907.10610</u>]

Gravitational Atoms

Orbital angular velocity

 Ω_3

 Ω_2

 Ω_1

Compton wavelength of a light scalar field:

$$\lambda_c \simeq 2 \,\mathrm{km} \left(\frac{10^{-10} \,\mathrm{eV}}{\mu} \right)$$

Super-radiance (and growth of a 'gravitational atom') when:

$$r_g \sim GM_{\rm BH}/c^2 < \lambda_c$$

 $M_{\rm BH} \in [1, 10^{10}] \, M_{\odot}$ $\rightarrow m_{\phi} \in [10^{-20}, 10^{-10}] \,\mathrm{eV}$ [Chia, <u>2012.09167</u>]

[Baumann et al., <u>1804.03208</u>, <u>1908.10370</u>, <u>1912.04932</u>]

GW Dephasing from DM

Dense DM spike may form around IMBHs

$$\rho_{\rm DM}(r) = \rho_{\rm sp} \left(\frac{r_{\rm sp}}{r}\right)^{\gamma_{\rm sp}}$$

 $\rho_{\rm DM}(r_{\rm isco}) \sim 10^{24} \, M_{\odot} \, {\rm pc}^{-3}$

[Gondolo & Silk, astro-ph/9906391] [Eda et al., <u>1301.5971</u>, <u>1408.3534</u>]

Dark Matter feedback

Need to worry about dynamic response of the DM spike...

[BJK, Nichols, Gaggero, Bertone, 2002.12811]

[Coogan, Bertone, Gaggero, BJK & Nichols, in progress]

Dark Matter feedback

Need to worry about dynamic response of the DM spike...

[BJK, Nichols, Gaggero, Bertone, 2002.12811]

[Coogan, Bertone, Gaggero, BJK & Nichols, in progress]

Multimessenger: GWs + Radio

Consider an NS, embedded in an axion-DM spike, around an IMBH!

Radio observations with SKA would be able to probe QCD axion DM in the range 10⁻⁷ - 10⁻⁵ eV.

[Edwards, Chianese, **BJK**, Nissanke, Weniger, <u>1905.04686</u>]

24

Things I couldn't talk about

Indirect detection [<u>1604.00014</u>, <u>2006.00513</u>, <u>2008.11561</u>] Galactic Centre Excess [10.1146/annurev-nucl-101916-123029] Indirect detection with neutrinos [1912.09486] Indirect detection with cosmic rays [1802.00636] GW Probes of DM [1907.10610] Primordial Black Holes as DM [2007.10722]

Some other 'indirect probes':

Cosmic rays [Cuoco et al., <u>1903.01472;</u> Boudaud et al., <u>1906.07119;</u> Génolini et al., <u>2103.04108</u>] Gas cloud heating [Bhoonah et al., <u>1806.06857</u>, <u>1812.10919</u>, <u>2010.07240</u>; Wadekar & Farrar, <u>1903.12190</u>] Strong-lensing of substructure [Diaz Rivero & Dvorkin, <u>1910.00015</u>; Coogan et al., <u>2010.07032</u>] Micro-lensing of substructure [Croon et al., <u>2002.08962</u>, <u>2007.12697</u>] Stellar streams [Bonaca et al., <u>1811.03631;</u> Banik et al., <u>1911.02662</u>, <u>1911.02663</u>] CMB [Slatyer, 1506.03811; Gluscevic & Boddy, 1712.07133; Boddy et al., 1808.00001] Cosmic birefringence [Fujita et al., 2008.02473] Stellar structure and evolution [Vincent, 2009.00663; Croon et al., 2009.01213]

Some Reviews:

What are indirect probes?

Broad definition - searches for DM in which the interactions (gravitational or otherwise) happen whether we like it or not ('passive probes?')

Practical definition - searches for the effects of DM in astrophysical and cosmological systems.

Cynical definition - searches for DM in which we have very little experimental control (e.g. over backgrounds, systematics, etc.)

What are indirect probes?

Broad definition - searches for DM in which the interactions (gravitational or otherwise) happen whether we like it or not ('passive probes?')

Practical definition - searches for the effects of DM in astrophysical and cosmological systems.

Cynical definition - searches for DM in which we have very little experimental control (e.g. over backgrounds, systematics, etc.)

Thank you!

Backup Slides

DM Capture in the Earth and Sun

Primordial Black Holes

[Other reviews: <u>1801.05235</u>, <u>2002.12778</u>, <u>2006.02838</u>]

[Green & BJK, <u>1709.06576</u>] [Code online: <u>github.com/bradkav/PBHbounds</u>]

Axion miniclusters

Overdensities act as 'seeds' for bound "axion miniclusters" (**AMCs**)

For an overdensity of size $\delta = (\rho - \bar{\rho})/\rho$ the final density is:

$$\rho_{\rm AMC}(\delta) = 140(1+\delta)\delta^3\rho_{\rm eq}$$

[Kolb & Tkachev, <u>astro-ph/9403011</u>]

Not to be confused with Axion Stars [Schive et al., <u>1407.7762</u>, Visinelli et al., <u>1710.08910</u>]

$\delta = (\rho - \bar{\rho})/\rho$

[Buschmann et al., <u>1906.00967</u>]

GW+Radio - DM density

Time to merger

DM Dephasing

Nature of Dark Matter

Red regions would be ruled out by observation of a DM spike! [Hannuksela et al., <u>1906.11845</u>]

[See also Bertone, Coogan, Gaggero, BJK & Weniger, <u>1905.01238</u>]

